
    Species of the nonnative genus Tamarix
(Tamaricaceae) are invasive trees or shrubs
within riparian ecosystems of the southwestern
United States (Thomaso 1998, DeLoach et al.
2003). Tamarix species aggressively invade
riparian ecosystems and can completely
exclude native species by forming monocul-
tures of dense stands with high leaf area (Sala
et al. 1996). The implications of Tamarix
competition with native species for water and
light are widespread. For example, riparian
community structure and fluvial ecosystem
processes are transformed following Tamarix
introduction and establishment (Lovell et al.
2009), and water table depth can be altered by
Tamarix monocultures (Johnson 1987).

    Tamarix invasion is aided by both biotic
and abiotic factors. The invasive nature of
Tamarix has particularly benefited from an -
thropogenic disturbance to riparian ecosys-
tems with dam construction and flow regula-
tion. Dams disrupt natural flood regimes and
alter fluvial processes (i.e., stream bank ero-
sion and sediment deposition), which are
integral to the establishment of many native
riparian species (Fenner et al. 1985, Strom -
berg et al. 1991, Auble et al. 1994, Merritt
and Cooper 2000, Mortenson and Weisberg
2010). With decreased flooding and low flows,
waterways downstream of dams can experi-
ence higher salinity levels (Lee and Bell
1999, Havel et al. 2005), which aid in the

Western North American Naturalist 76(3), © 2016, pp. 339–351

PHYSIOLOGICAL RESPONSE OF TAMARIX RAMOSISSIMA 
(TAMARICACEAE) TO A BIOLOGICAL CONTROL AGENT

Evan B. Craine1, Ann Evankow1, Katherine Bibee Wolfson2, Kathryn Dalton1, 
Holly Swedlund1, Casey Bowen1, and M. Shane Heschel1,3

      ABSTRACT.—Within the last century, the floristic composition of riparian communities in the Southwest has drasti-
cally changed following introduction of the exotic tree Tamarix ramosissima. In an attempt to control Tamarix popula-
tions, the tamarisk leaf beetle (Diorhabda carinulata) has been utilized as a biological control agent. Three years of data
collection at our study sites along Fountain Creek (Fountain, CO) allowed us to characterize the response of Tamarix to
invasion by the biological control agent. In analyzing data collected before, during, and after the beetle invasion, we
observed a significant effect of foliar herbivory on Tamarix physiology and life history strategy. Associations between
flower number and functional traits changed before, during, and after the beetle invasion. Before the invasion, repro-
ductively fit individuals exhibited high stomatal conductance and used relatively more water. During and after the invasion,
fit plants had higher foliar chlorophyll content, but conductance was not significantly correlated with fecundity. Tamarix
responded to defoliation by increasing water use, which may have been an attempt to sustain photosynthate allocation to
reproductive structures. Therefore, the leaf beetle may increase the water use of Tamarix during the growing season.

      RESUMEN.—Durante el último siglo, la composición floral de las comunidades ribereñas en el suroeste ha cambiado
drásticamente tras la introducción del árbol exótico Tamarix ramosissima. En un intento por controlar las poblaciones de
Tamarix, se ha utilizado al escarabajo de la hoja de tamariscos (Diorhabda carinulata) como control biológico. La colecta
de datos durante tres años en nuestras áreas de estudio a lo largo de Fountain Creek (Fountain, Colorado) nos permitió
caracterizar la respuesta de Tamarix a la invasión del agente de control biológico. Al analizar los datos obtenidos antes,
durante y después de la invasión del escarabajo, observamos un efecto significativo de la herbivoría foliar en la fisiología
y la estrategia de historia de vida de Tamarix. Las asociaciones entre el número de flores y los rasgos funcionales se
modificaron antes, durante y después de la invasión de escarabajos. Antes de la invasión, los individuos reproductiva-
mente aptos mostraban en los estomas una conductancia elevada y utilizaban relativamente más agua. Durante y después
de la invasión, las plantas sanas mostraron un mayor contenido de clorofila foliar, pero la conductancia no se correla-
cionó significativamente con la fecundidad. El Tamarix respondió a la defoliación mediante el aumento en el uso de
agua, lo que pudo ser un intento para mantener la asignación de fotosintatos a las estructuras reproductivas. Por lo tanto,
el escarabajo puede aumentar el uso del agua de Tamarix durante su estación de crecimiento.
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establishment of salt-tolerant species (e.g.,
Tamarix) and inhibit the establishment of salt-
sensitive native species (Siegle and Brock
1990, Busch and Smith 1995, Shafroth et al.
1995, Lovell et al. 2009). Moreover, native
riparian species that are sensitive to water
availability are negatively impacted by reduced
water table height from river diversions and
flow regulations (Smith et al. 1991, Stromberg
et al. 1991).
    Certain key biological characteristics have
contributed to Tamarix invasibility. Tamarix
disperses small, comose seeds in vast quanti-
ties throughout the growing season (Merkel
and Hopkins 1957, Warren and Turner 1975).
Continuous seed dispersal results in complete
colonization of viable germination sites by
Tamarix seedlings, and Tamarix seeds are able
to germinate in soils with high salinity levels
(Brotherson and Winkle 1986, Shafroth et al.
1995, Sala et al. 1996). Early growth strate-
gies result in resource allocation to below-
ground biomass, which augments the capacity
of Tamarix to operate as a facultative phreato-
phyte (Brotherson and Winkle 1986, Busch
et al. 1992). Overall, Tamarix growth and
physiology allow it to potentially monopolize
water resources in riparian systems (Sala et al.
1996).
    As water availability has become an increas-
ingly contentious issue in arid regions of the
southwestern United States, concerns have
been raised regarding Tamarix water use.
Some studies have demonstrated that Tamarix
water use is among the highest of any phreato-
phyte in the southwestern United States
(Brotherson and Winkle 1986), including na -
tive riparian trees (Busch and Smith 1995).
Other studies have challenged these earlier
findings: depending on environmental condi-
tions, Tamarix water use may vary, making its
stomatal conductance of water vapor plastic
(Cleverly et al. 2002, Owens and Moore 2007,
Lovell et al. 2009, Nagler et al. 2013). Lovell
et al. (2009) demonstrated that Tamarix has
greater water-use plasticity than either Popu-
lus or Salix. In moist sites along the Arkansas
River, Colorado, Tamarix had greater stomatal
conductance than Populus or Salix; however,
in drier sites, Tamarix had lower stomatal con-
ductance than Populus or Salix. These data
suggested that Tamarix might be able to main-
tain relatively higher carbon assimilation rates
when water is plentiful and conserve more

water under dry conditions than the other
riparian species. Thus, Tamarix water use can
depend on local environmental conditions.
    When Tamarix does transpire less effi-
ciently, high water use by Tamarix is largely
due to the high leaf area index of Tamarix
communities compared to other riparian
populations (Sala et al. 1996). In areas of high
density or leaf area, Tamarix has the ability to
dry up springs, drain small ponds, and even
desiccate perennial streams (Johnson 1987).
Controlling Tamarix stands with high leaf
area may conserve water, although the vege-
tation that replaces Tamarix will determine
the magnitude of water conservation (Shafroth
et al. 2005).
    Varying management techniques have been
utilized in attempts to control and manage
Tamarix, with the hope of restoring riparian
ecosystems and reducing water lost through
evapotranspiration by Tamarix. Because Tamarix
represents the sole genus from the family
Tamaricaceae in North America, biological
control with the tamarisk leaf beetle Dio -
rhabda spp. (Coleoptera: Chrysomelidae) has
been considered a viable management tech-
nique (Gaskin et al. 2004). The beetles feed by
scraping away the cuticle to access mesophyll
and vascular tissues within the leaves. To miti-
gate water loss from damaged leaf tissues,
Tamarix abscises masticated leaves (Snyder et
al. 2010). Because of reductions in photosyn-
thate production, this leaf loss can lead to
Tamarix mortality.
    Since the original introductions occurred,
the beetles have successfully spread from the
original release sites and defoliated thousands
of acres of Tamarix stands (Carruthers et al.
2008). The success of the tamarisk leaf beetle
at dispersing to Tamarix-dominated riparian
ecosystems has the potential to make this
beetle species one of the most widespread
biological control agents in recent history
(Snyder et al. 2010). Although the tamarisk
leaf beetle has succeeded at defoliating
extensive Tamarix stands, the physiological
impacts of the biological control agent on
Tamarix are still widely unknown (Snyder et
al. 2010) and could have ecosystem-wide con-
sequences (Denslow and D’Antonio 2005).
    Here, we examine the response of Tamarix
to invasion by the tamarisk leaf beetle with
respect to reproductive potential and a suite
of functional traits. We measured stomatal
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conductance, foliar chlorophyll and abscisic
acid content, proportion of living stems, and
flower production on individual tamarisk plants.
Stomatal conductance is the relative rate that
water vapor exits as carbon dioxide enters
through leaf stomata (similar to transpiration
rate). Foliar abscisic acid (ABA) is a phytohor-
mone that causes stomatal closure, and when
present in high concentrations can result in
increased water-use efficiency and decreased
water use (Davies et al. 1990, Heschel and
Riginos 2005). Foliar chlorophyll content is
indicative of photosynthetic potential and has
been linked to stress tolerance in previous
tamarisk work (Lovell et al. 2009). We asked
the following research questions: How are
Tamarix functional traits impacted by the bio-
logical control agent? How are Tamarix fecun-
dity and survival strategies impacted by the
biological control agent?

METHODS

Study System

    Riparian forests in Colorado have histori-
cally been composed of a diverse assemblage
of forbs and graminoids interspersed among
2 dominant woody species in the Salicaceae
family: the plains cottonwood (Populus del-
toides) and the sandbar or coyote willow
(Salix exigua) (Reichenbacher 1984). Since
the early 1820s, up to 12 species from the
genus Tamarix have been introduced into
parts of the southwestern United States
(Baum 1967, Crins 1989). Horticulturists
performed the first introductions of Tamarix
during the early nineteenth century from
sources in Europe, Asia, and North Africa
(Gaskin and Schaal 2002, Gaskin and Kazmer
2006). During the mid-1800s, Tamarix was
planted by the Army Corps of Engineers
along waterways as a bank stabilizer (Bean et
al. 2013), and by the late nineteenth century,
Tamarix species started to naturalize in the
southwestern United States. The species
present at our study sites in Colo rado was
Tamarix ramosissima. Tamarix ramosissima
(hereafter Tamarix) is a deciduous shrub or
small tree characterized by reddish stems,
pale green foliage, and distinctive minute,
pink flowers (Baum 1967; Fig. 1). It can be
found in saline and xeric soils along riparian
corridors in southeastern Colorado (Brother-
son and Winkle 1986).

    In an attempt to control Tamarix via foliar
herbivory, management agencies have intro-
duced the tamarisk leaf beetle (Diorhabda
spp.) as a biological control agent in the south-
western United States (Hart et al. 2005). The
most likely species found at our study sites in
southeastern Colorado is Diorhabda carinu-
lata (B. Drummond personal communication).
Diorhabda carinulata (the northern tamarisk
leaf beetle) is endemic to central Asia and is
adapted to higher latitudes. Populations of this
beetle have become widespread throughout
Colorado, Montana, Wyoming, Utah, and
Nevada. Following secure cage trials in 2001
(Dudley et al. 2001), experimental releases
were carried out at 7 sites, including a site
near Pueblo, Colorado. The beetles found at
our Fountain Creek study sites during the
2013 field season most likely aggregated there
after dispersing from a Pueblo, Colorado,
introduction site.

Study Sites

    Two sandbars, identified as northern and
southern, along Fountain Creek were chosen as
study areas near Fountain Creek Regional Park
(38° 42�07.51�N, 104° 43�02.25�W). The Foun-
tain Creek watershed drains approximately
930 square miles of southeastern Colorado and
experiences seasonally varying flow regimes.
These sandbars are relatively uniform in
nature, although some distinct differences exist.
The northern sandbar experiences higher light
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    Fig. 1. Bankside Tamarix at Fountain Creek, Colorado.



levels compared to the southern sandbar. A
mixed canopy of Populus and Tamarix provides
some shade and decreases light penetration to
the understory and soil surface at the southern
site. Both sandbars have well-drained soils
composed of sand and coarse sediment.

Experimental Design

    TREE SELECTION AND SITE ENVIRONMENT

MEASUREMENTS.—During the 2010 field season,
325 Tamarix ramosissima plants were tagged
at the 2 sandbars along Fountain Creek.
During the 2013 and 2014 field seasons, a
total of 356 and 200 Tamarix individuals,
respectively, were tagged at the same 2 sand-
bars. For all 3 years, the chosen Tamarix plants
were haphazardly selected from the entire
Tamarix population within 30 m of the stream
bank at each site. The stem diameter (at 1 m
from the soil surface) of selected plants ranged
from 5 to 75 mm, with most plants having
about a 25-mm stem diameter.
    For each sandbar, light levels at the stem
and at 1 m from the stem were collected in
addition to soil moisture content. Approxi-
mately 100 light and moisture readings were
taken across both sites each field season. A
LightScout PAR (photosynthetically active
irradiance) quantum meter (Spectrum Tech-
nologies, Aurora, IL) was used to measure
light levels at each plant. Volumetric water
content (VWC) at a 12-cm soil depth was
measured using a TDR Moisture Meter
(Campbell Scientific, Logan, UT) at each of
the sandbars. Riverine data from the United
States Geological Survey (USGS) for Foun-
tain Creek, Colorado, were examined for
flood frequency calculations. For functional
trait measurements, we selected the most
recently fully expanded leaves in order to
control for leaf age.
    FUNCTIONAL TRAIT MEASUREMENTS.—Stom-
atal conductance (gst) measurements were
collected to determine water-use rates for
individual Tamarix leaves. A Steady State Dif-
fusion Leaf Porometer (model SC-1, Decagon
Devices, Pullman, WA) was used to collect all
stomatal conductance measurements. Mea-
surements were collected between 10:00 and
15:00 when light levels were greater than 900
mmol photons ⋅ m−2s−1. Terminal, fully ex -
panded leaves on recent growth were selected
for conductance measurements; 2 leaves were
clamped with the sensor head on the abaxial

surface. These data are estimates of leaf-level
gas exchange for a single branch, rather than
transpiration rates for an entire tamarisk
plant. During the 2010 and 2013 field sea-
sons, stomatal conductance was measured for
210 and 308 individuals, respectively, from
late June until early July. During the 2014
field season, stomatal conductance was mea-
sured for 188 individuals during early July.
Stomatal conductance data were adjusted for
day and time-of-day effects with regression
(see below).
    Leaves were collected from randomly
selected Tamarix individuals to quantify foliar
chlorophyll content. For each individual,
recent growth was sampled from the first main
branch. Five to 6 terminal leaves were
removed and placed directly on ice in a cooler.
Samples were transferred to a dark, −20 °C
freezer immediately upon arrival at the labora-
tory. During the 2010, 2013, and 2014 field
seasons, 137, 129, and 46 individuals were
sampled for chlorophyll analysis, respectively.
Chlorophyll was extracted and quantified
according to the protocol from Lovell et al.
(2009). Leaf samples (300–350 mg) were pul-
verized in spectrophotometric-grade acetone
with a Polytron tissue grinder (Polytron,
Duluth, GA). To quantify foliar chlorophyll
content, absorbance values were measured
at 647 nm and 664 nm with a Genesys 20 Visi-
ble Spectrophotometer (Thermo Scientific,
Waltham, MA).
    Abscisic acid (ABA) was extracted and
quantified from leaves collected at the north-
ern site during the 2010 and 2013 field sea-
sons, according to the protocol in Boggs et
al. (2010). Samples collected in 2010 and
2013 were weighed and stored at −20 °C in
the dark. From the stored leaf samples, 32
and 51 samples were chosen from 2010 and
2013, respectively. For both field seasons,
about 300 mg of leaf tissue from each plant
was lyophilized for 24 h. ABA was extracted
from lyophilized leaf samples using a Poly-
tron tissue grinder with minimal lighting.
Leaf samples were ground in ABA extrac -
tion buffer containing methanol, butylated
hydroxytoluene, and citric acid monohydrate
(Bibee et al. 2011). Ground samples were
stored in a −20 °C freezer until they were
centrifuged; following centrifugation, super-
natant was added to TBS (with MgCl2) and
vortexed.
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    ABA was quantified in leaf samples using
ELISA (Agdia, Inc., Elkhart, IN). ABA stan-
dards (10−6 to 10−12 M; mixed isomers,
Sigma-Aldrich) were prepared to generate a
standard curve. For each microtiter plate, wells
were loaded in the dark on ice, and substrate
solution was added to each well. After incuba-
tion at 37 °C, we used an Optima Fluostar
plate reader (BMG Labtech Inc., Cary, NC)
to measure absorbance in each of the wells at
405 nm. Optical densities were recorded for
the standards and samples to generate molar
concentrations per milligram of leaf tissue
(Boggs et al. 2010, Heschel et al. 2014).
    To estimate tree health during the 2013 and
2014 field seasons, the numbers of living and
dead stems were recorded for 308 and 168
individuals, respectively. From these data we
calculated the proportion of living to dead
stems. All stems were meticulously counted
and recorded as either “dead” or “alive” on a
given plant; “alive” stems had at least 50% of
the stem covered in healthy, green foliage.
    REPRODUCTION ESTIMATES.—For all 3 field
seasons, inflorescences were counted and
used to estimate total flower number for each
individual. We define an inflorescence as a
cluster of 6–8 racemes. We note that flower
number does not equate with reproductive
fitness; however, because of high selfing and
outcrossing rates, many flowers in our popu-
lations do become fruits (Drummond and
Heschel unpublished data).
    For all tagged plants in a given year, we
counted the number of inflorescences on each
branch and then estimated the number of
flowers for each of these inflorescences. To
estimate mean flower number per inflores-
cence, we measured 10 racemes per individ-
ual. On the first major branch, 5 racemes from
the terminal inflorescence were measured to
the nearest millimeter. This measurement was
repeated on the 2nd major branch for a total of
10 raceme lengths per plant. We used a
regression model (see below) to estimate how
many flowers each of these racemes con-
tained, and calculated an average flower num-
ber per inflorescence for every plant. Finally,
we totaled all flowers for each Tamarix plant
by multiplying the average flower number per
inflorescence by the total number of inflores-
cences per plant. This method allowed us to
conservatively estimate the total number of
flowers for each flowering Tamarix in our

study. (To establish a relationship between
raceme length and flower number, we first
measured the length and total flower number
for 5 racemes at the terminus of the lowest
branch of 40 plants. Raceme length was then
regressed against total flower number to gen-
erate a linear model [R2 = 0.72].)

Data Analyses

    All statistical analyses were performed with
JMP version 7.0.2 (SAS Institute, Cary, NC).
ANOVAs were used to test for functional trait
and flower number differences between inva-
sion periods; invasion period (treatment) and
sandbar location (site) were considered fixed
factors. Location (site) was included as a block-
ing factor to control for environmental effects
on the north and south sandbars; a site-by-
treatment interaction was not possible for ABA
and chlorophyll concentration data due to sam-
pling issues for the preinvasion year. Planned
contrasts (t tests) were used to compare trait
values between individual invasion time peri-
ods (statistical significance was determined at
P ≤ 0.05). Within a sampling year, stomatal
conductance data were adjusted for effects of
measurement day and time. Conductance val-
ues were regressed against measurement time,
and residuals from this regression were added
to the gst grand mean (Bibee et al. 2011). For
all statistical models, residual distributions were
examined and the data were log-transformed
where necessary. Log10 transformations were
used to meet assumptions of normality.
    Phenotypic “selection” analyses were used
to examine the effects of functional traits on
flower production for each invasion period
(Heschel and Riginos 2005). Our conservative
estimate of flower number is not equivalent to
reproductive fitness in Tamarix; however, it
does provide an estimate of reproductive
potential/fecundity. Flower number data were
relativized and trait data were standardized
for each invasion period before linear regres-
sion analyses were performed. Relative flower
number was determined by dividing total
flower number by the grand mean for each
invasion period. Traits were standardized to a
mean of 0 with a standard deviation of 1.
Differential analysis was a simple linear
regression of the standardized trait on relative
flower number. Gradient analysis was a mul-
tiple regression of all standardized traits on
relative flower number.
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RESULTS

Site Environmental Conditions

    FLOOD FREQUENCY AND DISCHARGE.—
United States Geological Survey (USGS) data
for Fountain Creek, Colorado, collected by
station number 07106000 demonstrate differ-
ences in mean gage height between invasion
periods. Gage heights were averaged from
June to August for each invasion time period.
The post–beetle invasion time period had the
highest gage height (x– = 1.46 m), whereas
during the beetle invasion, gage height was

the lowest (x– = 0.973 m). The post–beetle inva-
sion period was characterized by an increase
in flood events leading to high channel
height and stream flow. In 2010, the mean
monthly discharge of Fountain Creek from
May through August ranged from 82.5 ft3 ⋅ s−1

to 154.5 ft3 ⋅ s−1. In the 2013 field season,
the mean monthly discharge ranged from
25.7 ft3 ⋅ s−1 to 141.1 ft3 ⋅ s−1. In 2014, the mean
monthly discharge ranged from 57.3 ft3 ⋅ s−1

to 147.4 ft3 ⋅ s−1.
    TEMPERATURE, PRECIPITATION, AND LIGHT

LEVELS.—Temperature and precipitation data
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    Fig. 3. Total monthly precipitation in Fountain, Colorado, during the 2010 (pre–beetle invasion), 2013 (during–beetle
invasion), and 2014 (post–beetle invasion) field seasons.

    Fig. 2. Mean monthly temperature in Fountain, Colorado, during the 2010 (pre–beetle invasion), 2013 (during–beetle
invasion), and 2014 (post–beetle invasion) field seasons.
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(Figs. 2, 3) were collected from a weather
station near Butts Army Airfield at Fort Car-
son, Colorado, which is within 16 km (10
miles) of our study sites. Mean monthly tem-
peratures for June during 2010, 2013, and
2014 ranged from 19.4 to 21.1 °C. In July
over the same time period, the average
monthly temperature ranged from 21.1 to
22.8 °C. In 2010 and 2013, precipitation
accumulation from May through August
ranged from 3.9 to 13.6 cm and 2.4 to 9.7 cm,
respectively. In 2014, precipitation ranged
from 1.5 cm to 16.8 cm for this same time
period. For June and early July, the precipita-
tion ranged from about 4 cm to 8 cm across
all 3 years, with 2014 being the wettest year.
Volumetric water content measurements
ranged from 2% to 11% across both sandbars
during all 3 growing seasons. For the northern
sandbar, light levels ranged from about 1200

to 1900 mmol photons ⋅ m−2 s−1. For the south-
ern sandbar, light levels ranged from 400 to
1820 mmol photons ⋅ m−2 s−1.

Tamarix Water Relations

    Invasion by the tamarisk leaf beetle had a
significant effect on leaf-level stomatal con-
ductance (Table 1); moreover, contrasts indi-
cated that stomatal conductance values were
significantly different for each invasion
period (Fig. 4). Conductance was lowest dur-
ing the pre–beetle invasion time period,
highest during the beetle invasion, and
intermediate during the post–beetle invasion
period (Fig. 4). Invasion period had a mar-
ginally significant effect on foliar abscisic
acid content (Table 1). Foliar abscisic acid
content was lower during the pre–beetle
invasion period than during the beetle inva-
sion, but these differences were small
(mean molar ABA per mg leaf weight: 2010
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    TABLE 1. ANOVA results for invasion period (pre–, during–, and post–beetle herbivory) and site (south and north) on
physiological traits. ABA = foliar abscisic acid concentration per milligram fresh leaf mass; gst = stomatal conductance.
F values are reported from effect tests. NA = not applicable.

                                                                                                                                            Total flower                Proportion
                                              Log gst                      ABA                   Chlorophyll                   number                         alive

Invasion period                  185.35***                  3.499+                 25.4445***                  8.8710***                 36.6887***
Site                                         0.1488                      NA                       2.8953+                     0.7820                         1.5019
Invasion by site                      0.0509                      NA                           NA                         0.7287                       18.8251*

+ P < 0.1        ** P < 0.01
* P < 0.05       *** P < 0.001

    Fig. 4. Mean stomatal conductance measurements (–+1 SE) for Tamarix individuals during the pre–, during–, and
post–beetle invasion time periods. Conductance values were adjusted for measurement time. Shared letters indicate a
lack of statistical significance with planned contrasts.
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[pre–beetle invasion] = 2.41 × 10−10 [SE
2.40 × 10−10], 2013 [during] = 8.17 × 10−10

[SE 1.91 × 10−10 ]).

Foliar Chlorophyll Content

    Invasion period had a significant effect on
foliar chlorophyll content (Table 1). Chlorophyll
content declined across the invasion periods;
foliar chlorophyll content was highest before
the beetle invasion, decreased during the
beetle invasion, and decreased again following
the beetle invasion (Fig. 5). These changes in

leaf chlorophyll content should translate into
differences in photosynthetic potential. There-
fore, decreases in foliar chlorophyll might
result in less biomass accumulation and a
potential reduction in reproductive effort.

Proportion of Stems Alive

    There was a significant effect of invasion
period on the proportion of living stems
(Table 1). During the beetle invasion there
was a higher proportion of living stems than
during the post–beetle invasion period (Fig. 6);

346 WESTERN NORTH AMERICAN NATURALIST [Volume 76

    Fig. 5. Mean foliar chlorophyll content (–+1 SE) of Tamarix for pre– and during–beetle invasion time periods. Shared
letters indicate a lack of statistical significance with planned contrasts.

    Fig. 6. Mean proportion of living stems (–+1 SE) on Tamarix for during– and post–beetle invasion time periods. Shared
letters indicate a lack of statistical significance with planned contrasts.

                  Invasion Period

    
 C

hl
or

op
hy

ll (
m

g)

    During                                                              Post

       Pre                                        During                                       Post

Invasion Period

    
 P

ro
po

rti
on

 A
liv

e



also, the southern site experienced stronger
herbivory than the northern site (site-by-inva-
sion interaction, Table 1). The pre–beetle
invasion period was characterized by trees
which leafed out early in the season and had a
high proportion of alive stems (observational
and photographic data, S. Heschel). This
reduction in total leaf area for individual
tamarisk plants reduced photosynthetic area
but also reduced the total number of stomata
for a given plant.

Tamarix Flower Production and “Selection”

    The tamarisk leaf beetle had a significant
effect on Tamarix flower production (Table 1).
Estimated total flower number was highest dur-
ing the pre–beetle invasion period, lowest
during the beetle invasion, and intermediate
during the post–beetle invasion period (Fig. 7).
It was assumed that total flower number is a

rough proxy for Tamarix fecundity, so “selec-
tion” analyses were conducted on the func-
tional data (Table 2). During the pre–beetle
invasion period, individuals with higher stom-
atal conductance and lower ABA content pro-
duced more flowers. Increased conductance
and decreased ABA may have helped to
reduce leaf temperatures while maintaining
photosynthesis with gas exchange (Heschel
and Hausmann 2001). During the beetle inva-
sion time period, individuals with higher foliar
chlorophyll content produced more flowers,
but ABA content did not significantly predict
flower number (Table 2). During the post–bee-
tle invasion period, individuals with high foliar
chlorophyll content had greater flower pro-
duction (Table 2). Stomatal conductance was
positively associated with flower number
during this time period, but not significantly
so (Table 2).
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    Fig. 7. Mean total flower numbers (–+1 SE) of Tamarix plants for the pre–, during–, and post–beetle invasion time periods.
Shared letters indicate a lack of statistical significance with planned contrasts.

    TABLE 2. “Selection” analyses for functional traits for pre–, during–, and post–beetle invasion time periods (i.e., associa-
tions between standardized traits and relative flower number). Differential “selection” coefficients (S) were slope terms
from linear regressions, and gradient “selection” coefficients (b) were slope terms from multiple regressions. NA = not
applicable (data absent).

                                              Pre-beetle                                        During-beetle                                     Post-beetle                              _________________________         _________________________          _______________________
                                       S                            b                             S                            b                          S                          b

gst                                     0.14389+              0.75597+          −0.17723               −0.22507             0.018181             0.011658
Chlorophyll              0.061062            −0.59868                 0.442389+             0.333622           0.285468*           0.300575+
ABA                      −0.42017*            −0.43277+          −1.12939               −1.76216                  NA                       NA

+ P < 0.1 
* P < 0.05

       Pre                                        During                                       Post
                  Invasion Period
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DISCUSSION

    Invasion by the tamarisk leaf beetle during
the 2013 field season impacted both Tamarix
functional traits and flower production. Dur-
ing invasion by the biological control agent,
leaf-level stomatal conductance and ABA
content increased, whereas foliar chlorophyll
content and total flower number decreased
relative to preinvasion levels. Following the
beetle invasion, leaf-level stomatal conduc-
tance was still relatively high, whereas foliar
chlorophyll content and the proportion of
living stems significantly decreased relative to
levels during the beetle invasion; however,
flower number did not significantly change
after the invasion. Our results suggest that
herbivory by the leaf beetle significantly
impacts Tamarix populations during both a
defoliation event and the subsequent growing
season. Furthermore, trait associations with
flower number seem to be impacted by the
biological control agent.

Biological Control and Tamarix Water Use

    The beetle had a significant impact on leaf-
level stomatal conductance at our study sites.
Our results provide an interesting addition to
previously reported findings on Tamarix water
use in response to the biological control agent.
Snyder et al. (2010) demonstrated in a con-
trolled greenhouse environment that stomatal
conductance increased in plants with beetles
present. Moreover, their data indicated that
beetle herbivory decreased photosynthesis
and produced leaves that were unable to
effectively regulate water loss. In a field set-
ting, Pattison et al. (2011) also found that beetle
defoliation inhibited the ability of Tamarix to
regulate water use (in part because of changes
in biomass allocation). Thus, both of these data
sets indicated that beetle herbivory might
make Tamarix less drought tolerant. Our field
results of increased stomatal conductance
during and after beetle invasion corroborate
these findings. However, this increased
water use by Tamarix plants might not be as
dramatic as our data suggest due to the leaf
loss caused by beetle herbivory; the conduc-
tance data presented here are at the individual
leaf level. Also, the increased water use dur-
ing the year following beetle herbivory may in
part be due to a slight increase in precipitation
during 2014.

    In addition to impacts on water use, her-
bivory by the tamarisk leaf beetle results in a
significant loss in photosynthetic area (Fig. 6).
To compensate for this loss of photosynthetic
area, Tamarix leaves might plastically respond
to beetle herbivory by increasing chlorophyll
production to enhance photosynthetic poten-
tial in remaining foliar tissues. Tamarix plants
also might produce more leaves in order to
increase photosynthetic area. However, both
of these defoliation response strategies require
a costly energetic input. In our Tamarix popu-
lation, plants that increased photosynthetic
potential produced more flowers (Table 2), but
beetle herbivory stress decreased chlorophyll
content and total leaf area during and after the
invasion time periods. Therefore, our results
indicate that photosynthetic potential may be
negatively impacted by the leaf beetle control
agent.
    A tradeoff seems to exist here between
drought response and photosynthetic rate;
individuals experiencing diminished photo-
synthetic potential must increase gas ex -
change with high gst to maintain carbon fixa-
tion rates. Tamarix leaves at our study sites
responded to herbivory by decreasing chloro-
phyll content. During the invasion, this re -
duction seemed to require Tamarix leaves to
open stomata for extended periods of time
(Fig. 4) to allow sufficient gas exchange to
maintain photosynthesis (Larcher 2003). Con-
sequently, transpiration and water loss would
have increased as stomata remained open,
and beetle herbivory might have contributed
to further water loss from masticated tissues.
Thus herbivory by the leaf beetle seems to
stress the tradeoff between drought response
and photosynthetic rate. Although it should
be noted that at the whole-plant level, a loss
of photosynthetic area and total stomatal den-
sity with herbivory would help to ameliorate
this tradeoff.
    Abscisic acid may be functioning to pro-
mote this physiological tradeoff. ABA increased
slightly during the invasion in response to
water stress and/or to facilitate abscission of
leaves damaged via beetle herbivory. Stomatal
conductance also increased during the inva-
sion. Plants experiencing increased ABA
content and increased stomatal conductance
can also exhibit low ABA sensitivity (cf. Hes-
chel and Hausmann 2001, Heschel et al.
2014); such low ABA sensitivity may decrease
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conductance response time. The rapid closure
of stomata during drought can help to pro-
mote stress tolerance. Thus, these individuals
may be compromising drought response by
increasing water use with low ABA sensitivity
in order to maintain carbon fixation rates.
Under these conditions, water use becomes
less efficient and Tamarix may “steal” water
from neighboring individuals, potentially im -
pacting water accessibility for native species.

Biological Control and Tamarix Reproduction

    Because decreased photosynthetic poten-
tial can impair photosynthate production and
exacerbate fundamental tradeoffs in Tamarix,
some physiological demands may suffer. Our
results indicate that the leaf beetle signifi-
cantly decreases flower production both during
and after the invasion relative to preinvasion
flower numbers. Thus, intense defoliation dur-
ing one growing season seems to impact
Tamarix growth during the following growing
season as well. This impact might be due to
decreased resource allocation to belowground
biomass, possibly in favor of generating repro-
ductive structures. Intense foliar herbivory by
the tamarisk leaf beetle might diminish the
ability of Tamarix to accumulate nonstructural
carbohydrate reserves in belowground bio-
mass (Dudley and Bean 2011). During the
beginning of the growing season, foliar growth
(e.g., bud break and leaf out) relies on stored
nonstructural carbohydrate reserves. Without
a sufficient supply of stored resources from
the previous growing season, Tamarix growth
can be inhibited (Pattison et al. 2011), and
such reductions in growth might decrease the
ability of Tamarix to access water resources.
Moreover, Tamarix flowering phenology may
be delayed, which might allow native species
that established earlier in the growing season
to shade Tamarix and further decrease growth
potential (Sher et al. 2002, Beauchamp and
Stromberg 2007).

Conservation Implications

    Although herbivory resulted in decreased
chlorophyll, increased leaf-level conduc-
tance, and overall reduced flower counts,
more fecund plants were able to maintain
photosynthetic potential with relatively high
foliar chlorophyll content, while mitigating
additional water loss with low stomatal con-
ductance (Table 2). That is, we detected a

significant correlation between fecundity and
leaf chlorophyll content. Given the tamarisk
leaf beetle’s impact on flower production and
functional traits, the biological control agent
appears to exert a significant selective pres-
sure on Tamarix. During and after beetle inva-
sion, plants with relatively low foliar chloro-
phyll content in their leaves might increase
their stomatal conductance in an attempt to
maintain relatively higher carbon fixation rates
and increase flower production/fecundity.
Tamarix populations that have relatively lower
chlorophyll might therefore impact the local
water table, and high transpiration rates by
dense stands of Tamarix might severely impact
water availability for native species (Johnson
1987). Thus, despite the success of the tamarisk
leaf beetle at defoliating Tamarix stands, a
reexamination of the use of biocontrol might
be necessary in parts of the southwestern
United States where water is particularly
scarce (Thomas and Reid 2007).
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